
Chapter 1
The Multi-product Newsvendor Problem:
Review, Extensions, and Directions for Future
Research

Nazli Turken, Yinliang Tan, Asoo J. Vakharia, Lan Wang, Ruoxuan Wang,
and Arda Yenipazarli

Abstract In this paper, we review the contributions to date for the multi-product
newsvendor problem (MPNP). Our focus is on the current literature concerning
the mathematical models and the solution methods for the multi-item newsvendor
problems with single or multiple constraints, as well as the effects of substitute and
complementary products on the stocking decisions and expected profits. We present
some extensions to the current work for a stylized setting assuming two products
and conclude with directions for future research.

Keywords Multi-product newsvendor • Complementary products • Effects of
substitute • Single constraint • Multiple constraints • Future research

1.1 Introduction

The single-item newsvendor problem is one of the classical problems in the
literature on inventory management (Arrow et al. 1951; Silver et al. 1998) and the
reader interested in a comprehensive review of extant contributions for analyzing the
problem is referred to Qin et al. (2011). In this paper, we focus on the multi-product
newsvendor problem (MPNP) which can be framed as follows. At the beginning of a
single period, a buyer is interested in determining a stocking policy (Qi) for product
i (i = 1, . . . ,n) to satisfy total customer demand for each product. For each product i,
the customer demand is assumed to be stochastic and characterized by a random
variable xi with the probability density function fi(·) and cumulative distribution
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function Fi(·). The quantity Qi is purchased by the buyer for a fixed price per unit
vi. Assuming no capacity restrictions on the purchase quantity and zero purchasing
lead time, an order placed by the buyer with the supplier at the beginning of a period
is immediately filled. Sales of the product occur during (or at the end of) the single
period and for each product i: (a) if Qi ≥ xi, then Qi − xi units which are left over at
the end of the period are salvaged for a per unit revenue of gi

1; and (b) if Qi < xi,
then xi −Qi units which represent “lost” sales cost Bi per unit. Assuming a fixed
market price of pi, then the actual end of period profit for the buyer stemming from
the sales of each product i is:

πi(Qi,xi) =

{
pixi − viQi + gi(Qi − xi) if Qi ≥ xi

piQi − viQi −Bi(xi −Qi) if Qi < xi
. (1.1)

Since the buyer cannot observe the actual end-of-period profit when making his
decision at the beginning of the period, the traditional approach to analyze the
problem is based on assuming a risk neutral buyer who makes the optimal quantity
decision at the beginning of the period by maximizing total expected profits. These
profits are:

E[πi(Qi)] =

∫ Qi

0
[pixi − viQi + gi(Qi − xi)] fi(xi)dxi

+

∫ ∞

Qi

[piQi − viQi −Bi(xi −Qi)] fi(xi)dxi

= (pi − gi)μi − (vi − gi)Qi − (pi− gi +Bi)ESi(Qi), (1.2)

where E[·] is the expectation operator, μi is the mean demand for product i, and
ESi(Qi) represents the expected units short assuming Qi units are stocked and can
be determined as

∫ ∞
Qi
(xi −Qi) fi(xi)dxi. Based on this, the buyer’s expected profits

for the MPNP are:

E[Π(Q1, .,Qn)] =
n

∑
i=1

E[πi(Qi)]

=
n

∑
i=1

[(pi − gi)μi − (vi − gi)Qi − (pi− gi +Bi)ESi(Qi)]. (1.3)

Note that (1.1) is separable in each product i. Given that (1.2) is strictly concave
in Q, it follows that the first order conditions (FOCs) for optimizing (1.2) are
necessary and sufficient to determine the optimal value of Qi. Based on this, the
optimal stocking quantity for each product i (Q∗

i ) is set such that:

Fi(Q
∗
i ) =

pi − vi +Bi

pi − gi+Bi
(1.4)

1For obvious reasons, it is generally assumed that gi < vi.
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and the corresponding total profit for the buyer is:

E[Π(Q∗
1,Q

∗
2, ..,Q

∗
n)] =

n

∑
i=1

[
(pi − gi)μi − (pi − gi+Bi)

∫ ∞

Q∗
i

xi fi(x)dxi

]
. (1.5)

Our focus in this chapter is on reviewing and extending the current literature
related to the MPNP. To start with, Sect. 1.2 reviews the current contributions for
analyzing the MPNP with one or more stocking constraints. In Sect. 1.3, we review
prior work which focuses on product substitutability in the context of the MPNP.
Extensions of the MPNP for complementary/substitute products are described in
Sect. 1.4 and finally, in Sect. 1.5, we conclude with directions for future research.

1.2 Buyer Stocking Constraints

1.2.1 Single Constraint

The general problem in this setting is to optimize the total profit in (1.5) subject to
the following constraint:

n

∑
i=1

siQi ≤ S, (1.6)

where si is the storage space or the resource coefficient required per unit of product i
and S is the total available storage space or resource. Since (1.3) is strictly and jointly
concave in the decision variables, Qis, and the constraints are linear, one approach
to solving this problem would be to start with the solution to the unconstrained
MPNP and substitute this solution in the constraint. If the constraint is not violated,
then we have an optimal solution. Of course, the issue that needs to be considered
is how to solve the problem when the constraint is violated with the solution to the
unconstrained MPNP.

Hadley and Whitin (1963) proposed a Lagrange multiplier technique and a
dynamic programming solution procedure for finding the optimal order quantity
in this setting. The Lagrangian for this context is:

L(Qi,λ ) = E[π(Q1, .,Qn)]−λ

(
n

∑
i=1

siQi − S

)
. (1.7)

Since (1.7) is strictly and jointly concave in the decision variables, the FOCs are
necessary and sufficient to obtain an optimal solution. These FOCs are:

∂L
∂λ

= [gi − vi]F(Q∗
i )+ [1−F(Q∗

i )][pi − vi +Bi]−λ si, (1.8)
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∂L
∂Qi

=
n

∑
i=1

siQi − S. (1.9)

Setting (1.8) equal to 0, the optimal stocking quantity for each product Q∗
i is:

Q∗
i = F−1

i

( pi − vi −λ si +Bi

pi − gi+Bi

)
, (1.10)

where λ ≥ 0.
In some practical situations, the optimal Q∗

i will tend to be very small and
any attempt to use the above procedure and round the results (to obtain integer
values of Q∗

i ) could lead to considerable deviations from optimality. To handle
this situation, the authors propose a dynamic programming-based procedure but
of course, this method is not easily applicable when the number of products (n)
is significantly large.

Nahmias and Schmidt (1984) introduced several heuristic methods to solve the
MPNP with a single constraint where the lagrange multiplier, λ , is not easy to
evaluate. They also included an interest rate, I,which is used in determining the
carrying charge per period for the average inventory. Hence, the expected profit
including the interest rate can be shown as:

E[πi(Qi)] = (pi+0.5Ivi−gi)μi− [(1− I)vi−gi]Qi−(pi+0.5Ici−gi+Bi)ESi(Qi).
(1.11)

The optimal quantity then becomes:

Q∗
i = F−1

[
pi − (1+ 0.5I)vi+Bi−λ si

pi + 0.5Ivi− gi +Bi

]
. (1.12)

Guessing an appropriate value of λ , computing the corresponding values of Qi

and subsequently adjusting the value of λ depending on (1.12) is very time
consuming. Thus, four different heuristic methods were introduced. Heuristic 1
finds the solution to the unconstrained problem and adjusts these values until the
constraint is satisfied. In heuristic 2, the critical point of the demand distribution is
scaled to fit the given volume. Finally, heuristics 3 and 4 are proposed based on the
Taylor expansion series of ti(λ ) = Φ−1(ai − biλ ) and the corresponding λ s could
be calculated as follows:

λi =
∑n

i=1 μisi +
√

2π ∑n
i=1 si(ai − 0.5)σi− S√

2π ∑n
i=1 biσivi

. (1.13)

The procedures listed in this paper are mostly useful for the continuous values of
Qis and are thus appropriate for moderate-to-high demand items.

Lau and Lau (1996) were among the first to observe that using Hadley and
Whitin’s approach may lead to infeasible(negative) order quantities for some of
the considered products when the constraint is tight. They based their work on
the classical expected cost minimization problem that was introduced by Hadley
and Whitin, where (vi − gi) is the unit overage cost and (pi − vi +Bi) is the unit
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underage cost. By rearranging terms of (1.8), we can find the expected net benefit
of the marginal unit of product i (EBMUi) at Qi as:

EBMUi = [pi − vi +Bi][1−F(Q∗
i )]− [vi− gi]F(Q∗

i ). (1.14)

Note that EBMU/si is analogous to the λi. Lau and Lau introduced a procedure to
handle distributions with strictly positive lower bounds as well as distributions with
long left tails.

Abdel-Malek et al. (2004) developed the exact solution formulae for uniformly
distributed demand and presented a generic iterative method (GIM) when the
demand distribution is general. The author considered the total budget as the
resource constraint (∑n

i=1 viQi ≤ BG). Different from most of the work in the
literature, the author assumes there is a leftover cost (disposal fee), where a salvage
value is usually considered. In general, if the budget is abundant, the problem could
be solved by the unconstrained solution, yet if the budget is tight, we need to apply
the Lagrangian-based approach to solve the problem. The value of λ is crucial to
solve the problem and the author discusses how to address this under specific and
general demand distributions. The formula for λ when the demand is uniformly
distributed between ai and bi can be written as:

λu =

N

∑
i=1

(cix
∗
i )−BG

N

∑
i=1

(bi − ai)(v
2
i )/(pi + hi)

, (1.15)

where hi is the holding cost. The closed-form expression when the demand is
exponential:

λ (1)
e =

N

∑
i=1

(cix
∗
i )−BG

N

∑
i=1

(μi − v2
i )/(vi + hi)

. (1.16)

The proposed GIM finds the optimum under uniform distribution and near optimum
for other general distributions. GIM first finds the solution without the constraint and
checks whether the constraint is satisfied. If the constraint is satisfied, the solution
is optimal, if not, a solution that satisfies the constraint is found. Next, the error
is estimated, if this is at an acceptable level, the optimal solution is found. As
an extension to this paper, Abdel-Malek and Montanari (2005a) also defined the
thresholds to help the decision maker in recognizing the tightness of the budget
constraint, which can avoid infeasible order quantities by removing products with
low marginal utilities. The following equations determine the thresholds depending
on the available budget and demand patterns:

Threshold 1:

B(1)
G =

n

∑
i=1

viF
(−1)
i

(
pi − vi +Bi

pi − gi+Bi

)
=

n

∑
i=1

viQ
∗
i . (1.17)
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Threshold 2:

B(2)
G =

n

∑
i=1

viF
(−1)
i

(
pi − (θ−+ 1)vi+Bi

pi − gi+Bi

)
, (1.18)

where θ− = min(i=1,.n)(θi) and notice that θi is the marginal utility at the lower
limit of the feasible amount of the product to be ordered and could be calculated as
follows:

θi =
pi +Bi− (pi − gi+Bi)Fi(0)

vi
− 1. (1.19)

Once the thresholds are defined, the solution procedure for each of the resulting
cases can be implemented as shown in the following.

Case 1 B(1)
G ≤ BG. In this case, the budget is abundant and the budget constraint is

redundant, so we can obtain the optimal solution from the unconstrained problem.

Fi(Q
∗
i ) =

(pi − vi+Bi)

(pi − gi +Bi)
. (1.20)

Case 2 B(2)
G ≤ BG < B(1)

G . In this case, we can relax the nonnegativity constraint and
use the Lagrange method to get the optimal solutions.

Fi(Q
∗
i ) =

pi − (θ + 1)vi +Bi

pi − gi +Bi
. (1.21)

Case 3 BG < B(2)
G . In this case, as mentioned before, the nonnegativity constraints

should be added to the model to avoid the infeasible solution. Furthermore, one or
more products will have an order quantity of zero.

To determine the optimal order quantities, one needs to compute the marginal
utilities of each product by using (1.19) first and rank them in ascending order.
Begin with excluding the product (set order quantity to zero) from the top of the
list and continue the exclusion process until the updated budget threshold is less
than the previous budget. B(G,i) is the updated budget threshold as well as the lower
bound of budget required for including item i in the list, which is expressed by:

BG,i =
n
′

∑
i=1

viF
−1
i

(
pi − (θi + 1)vi+Bi

pi − gi+Bi

)
< BG. (1.22)

n
′

is the updated number of items on the list. Once this point is reached, the
problem becomes tractable again and we can apply the Lagrangian method without
nonnegativity constraint to get the optimal solutions.

Several researchers incorporated nonnegativity constraints on the decision vari-
ables in their approaches. Erlebacher (2000) developed optimal and heuristic
solutions for the classical problem. The first optimal solution refers to the event
where each item has a similar cost structure and the demand for each item is from a
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similar distribution. The second case is when the demand for each item follows
a uniform distribution. The first heuristic (H1) is optimal when all of the items
have a similar cost structure and similar shaped demand distribution and requires
only the mean and variance of each demand distribution and the cost data. The
second heuristic (H2) is optimal when the demand is uniformly distributed for each
item. The third heuristic (H3) is a modification of (H1) to account for general cost
structures based on the form of (H2). The authors use computational experiments to
show that (H2) is the most effective one, especially at higher levels of capacity.

Zhang et al. (2009) developed a binary search method to obtain the optimal solu-
tion. They defined the marginal benefit function as ri(xi) = (vi −Bi +

(gi+Bi)Fi(xi)
vi

),
where ri(xi) is a nondecreasing function of xi, when xi ≥ 0 and its inverse is a
strictly increasing function of ri when 1− Bi

vi
≤ ri(xi) < 0. The authors find that

the optimal solution to the constrained problem is the same as the unconstrained
optimal solution when the budget constraint is not binding and is less than the
unconstrained optimal solution when the budget constraint is binding. If there are
nonzero optimal solutions, their marginal benefits should equal each other. When

the budget constraint is binding, the optimal solution is x(∗∗)i , and r(∗∗) = ri(xi)

is the marginal benefit at x(∗∗)i . Zhang and Hua showed that 1 − Bi
vi

≤ r(∗∗) < 0

and r(∗∗) can be found using a binary search between these values. The algorithm
they developed first finds the solution to the unconstrained problem and assesses
whether the optimal value leads to a binding budget constraint. If this solution does
not satisfy the condition, a binary search procedure is applied. This algorithm can
provide an optimal or a near optimal solution to MPNP under any general demand
distribution and it can also provide a good approximate solution under discrete
demand distributions.

Zhang and Du (2010) studied the MPNP with a capacity constraint, where the
products can be outsourced to an external facility at a higher cost. They considered
zero-lead time (ZO) and nonzero lead time (NO) strategies. In ZO strategy, the
manufacturer makes the decision for the in-house production quantity in the first
period, and in the second period, after the demand is realized, the manufacturer
outsources the remaining demand with zero lead time. There are no lost sales
in this case. In the NO strategy, the manufacturer makes the decision for the in-
house production quantity and the outsourcing quantity in the first period. In this
strategy, if the demand exceeds the in-house production and outsourcing, there will
be backorders or lost sales. The NO strategy assumes that there is no difference in
arrival times of the products whether they are outsourced or produced in-house or if
a time difference exists, it is assumed that there is no cost to receiving the product
earlier than required.

It is assumed that each product has a deterministic production capacity and
a random demand. The demand distributions are approximated to exclude the
negative values allowing the following assumptions: Fi(x) = 0 for all x < 0,
and Fi(0) ≥ 0. The expected profit function for the ZO strategy consists of the
revenue of product i, salvage value of the excess of product i, less the outsourcing
and in-house production cost of product i. This model can be viewed as a
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parameter-adjusted single-constraint newsvendor model, and can be solved using
the methods developed by Zhang et al. (2009). Similarly, the expected profit
function of the NO strategy can be written as π2 = ∑n

i=1[(pi − vi)Yi+(pi − di)Zi −
(pi − gi)

∫ Yi+Zi
0 Fi(xi)dxi, where di is the cost of outsourcing one unit, Yi and Zi

are the decision variables for in-house production and outsourcing, respectively.
By analyzing the partial derivatives and the KKT conditions, it is evident that
the constrained optimal solution for in-house production will always be smaller
than the unconstrained optimal solution for in-house production when there is no
outsourcing (Y ∗

i ≤ Ỹ ). The optimal outsourced quantity will also be less than the
unconstrained problem solution and the maximum value it can take is Z̃−Y ∗. If the
unconstrained optimal in-house production quantity does not exceed the available
capacity, everything will be produced in-house. If the unconstrained optimal in-
house production quantity exceeds the available capacity, the limited capacity must
be fully utilized. Finally, the optimal solutions can be designed in a way that there
exists only one product that utilizes both sources of production,and for every other
product only one source of production is used. The results are that ZO strategy
outperforms the NO strategy when outsourcing costs are equal and managers should
try to find a ZO option with low implementing costs to achieve the maximum profit.

Moon and Silver (2000) presented dynamic programming procedures for MPNP,
where the budget is represented as the total value of the replenishment quantities.
In this paper, the decision variable is the order-up-to level, Si. There is an inventory
level of Ii at the beginning of period i, a fixed ordering cost of Ai, and a variable cost
of GF

i (S
∗
i ). Initially, it is assumed that there is enough budget to permit each item

to be ordered at its optimal. The authors formulate the problem as a minimization
of fixed and variable costs CF

i (Si), and decide the ordering rule to be: order up to
S∗i , if Ii < s∗i where GF

i (s
∗
i ) = Ai +GF

i (S
∗
i ). Moon and Silver, then introduced a

restricted budget W and developed a dynamic program to find the optimal order-
up-to level. This dynamic program first tries to solve the single period model with
a fixed ordering cost for each item separately and defines P to be the set of items
that are profitable to order and reaches to an optimum when the ordering cost is
within the budget. This solution method will become time consuming if the number
of items or the number of budget constraints are high. Hence, the authors developed
two heuristic algorithms. The first one, is a greedy allocation algorithm. At each
step, the algorithm reduces the budget until a feasible solution is reached and any
remaining budget is filled in a reverse greedy manner. The second algorithm, a two-
stage heuristic, tries to assign the budget proportionally to the items in P.

The authors also considered the distribution-free model and assumed that
the distribution of the demand belongs to the class F cumulative distribution
functions with mean μ j and variance σ2

j . This approach requires finding
the most unfavorable distribution in F for each S. Then, the objective
function becomes min(S1,...,Sm) max(F∈F) ∑m

i=1 CF
i (Si). The authors rewrite the

cost function as ∑m
i=1 GW

i (Si)+A(i)1(Si>Ii) using the proposition from Gallego
and Moon (1993) indicating that a distribution satisfying E[Di − Si]

+ ≤
1
2{
√
[(σ2

i )+ (Si− μ2
i )

2]− (Si− μi)} can always be found. In this cost function,



1 The Multi-product Newsvendor Problem. . . 11

W denotes a worst case distribution function of the demand. The optimal solution
can be found through backward recursive equations. The use of this distribution-
free solution is justified when the expected value of additional information
(EVAI) = ∑m

i=1 CN
i (S

W
i ) − ∑m

i=1 CN
i (S

N
i ) is low. They mentioned two heuristics

can also be modified to solve the distribution-free approach; however, this has not
been studied in this paper.

Shao and Ji (2006) studied the multi-item newsvendor problem where the
demand is fuzzy. They defined the profit for product i to be:

f (xi,xi(ξi)) =

{
(pi − vi)Qi if Qi ≤ xi

(pi − gi)xi − (vi− gi)Qi) if Qi ≥ xi
(1.23)

and the total profit as F(x,X(ξ )) = ∑n
i f (xi,xi(ξi)) subjected to a budget con-

straint. They adopted the credibility theory and defined the credibility of a fuzzy
event as Cr(xi ≥ p) = 1

2 [Pos(xi ≥ Qi) + Nec(xi ≥ Qi)], where Pos(xi ≥ Qi) =
supu≥Qi μ(u) and Nec(xi ≥ Qi) = 1− supu<Qi μ(u). The maximum expected profit
of the newsvendor problem (MEP) is E[F(Q∗,xi)] when E[F(Q∗,xi)]≥ E[F(Q,xi)]
holds for all feasible Q. In the cases where a confidence level, α , is set as a
safety margin, α-maximum profit is F , where max(F |Cr(F(Q∗,xi) ≥ F) ≥ α) ≥
max(F |Cr((Q,xi)≥ F ≥ α). The most maximum profit (MMP) is F(Q∗,xi), when
Cr((Q∗,xi) ≥ F0) ≥ Cr((Q,xi) ≥ F0) where F0 is the predetermined profit. The
authors formulate three models to represent the problem. The first one, the expected
value model, maximizes the expected value operator of the fuzzy event with
nonnegativity and the budget constraints. The second one, chance constraint model,
maximizes α −MP subject to credibility, nonnegativity, and budget constraints. The
third model, dependent chance programming, maximizes the credibility not less than
the predetermined profit with budget and the nonnegativity constraints. In this paper,
a hybrid intelligent algorithm combining fuzzy simulation and genetic algorithm is
introduced and numerical examples are provided to display the performance of this
algorithm with the three different models mentioned.

Lau and Lau (1988) studied an MPNP, where the objective is to maximize the
probability of a given target profit. They assumed that the shortage cost is zero
and also showed that any problem with gi ≥ 0 can be converted to another one
without salvage value. The objective is to maximize PT = Prob(Total Profit ≥
Target Profit(T) ). They consider three different approaches to find the optimum;
use simulation to find Q∗

i s and repeat to find the maximizing PT for different pairs
of Q∗

i s, derive an expression for PT and use a “hill-climbing” method to find Q∗
i s or

analytically solve for the FOCs of PT . They execute approach 2 and 3, and perform
some numerical studies for specific demand distributions. In the first case, they
define Tm as (p1 − v1)μ1 +(p2 − v2)μ2, and the target profit as T ,which is set to
be Tm,0.5Tm, or 0.25Tm. The products are assumed to have identical parameters and
demand distributions. Lau proved previously in a single product model that

Q∗
i = T/(p− v). (1.24)
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In order to find the optimum, they first find the Q∗
I that satisfy (1.24) for the single

item case. The results show that when QI = Qi the individual and global optimal
values are the same. Otherwise, if P∗

T < PI , the optimal for individual products
do not give the global optimum. If P∗

T > PI and QI �= Qi, a reward policy can be
implemented to drive the subordinates to achieve the maximum global probability.
The authors applied this procedure for normally distributed demands as well. While
deriving the mathematical expression for PT in approach 3, they introduced two
different situations. Situation B happens when piQi ≥ T + v1Q1 + v2Q2 for both
products and Situation A happens if piQi ≥ T +v1Q1 +v2Q2 holds for one product,
and piQi < T + v1Q1 + v2Q2 holds for the other.

• Situation A

Range 1: 0 ≤ x1 ≤ L1 where L1 = (T + v1Q1 + v2Q2 − p2Q2)/p1. We know that
the profit from product 2 is p2Q2 − v2Q2; thus, product 1 must contribute
T − (p2Q2− v2Q2). If the demand is in this range, PT 1 = 0.

Range 2: L1 ≤ x1 ≤ Q1. In this range, the profit from product 1 is p1x1 − v1Q1

and the profit from product 2 is T − (p1x1 − v1Q1). Hence, the probability
of achieving T when the demand is in range 2 is: PT 2 =

∫ Q1
L1

f1(x1)[1 −
F2(

T+v1Q1+v2Q2−p1x1
p2

)]dx1.
Range 3: Q1 ≤ x1 ≤ ∞. In this range, the profit from product 1 is constant, (p1 −

v1)Q1, and the profit from product 2 is T − (p1 − v1)Q1. Thus, the probability
of achieving T when the demand is in range 3 is: PT3 =

∫ ∞
Q1

f1(x1)[1 −
F2(

T+v1Q1+v2Q2−p1Q1
p2

)]dx1.

• Situation B

Range 1: 0 ≤ x1 ≤ L2 where L2 = (T + v1Q1 + v2Q2)p1. Hence,
PT1 =

∫ L2
0 f1(x1)[1−F2(

T+v1Q1+v2Q2−p1x1
p2

)]dx2.
Range 2: L1 ≤ x1 ≤ ∞. In this range, the probability of achieving T is:

PT2 = 1−F1(L2).

The authors then derive the optimal ordering quantities assuming that the
parameters for both items are equal and the demand follows a uniform distribution.
Finally, they consider the case where the selling prices of each item is different.
They found using approach 2 that if p1 < p2, then Q∗

1 > Q∗
2 when T is small and

Q∗
1 < Q∗

2 when T ≥ Tm.
Vairaktarakis (2000) mentioned in his paper, “.....along with the traditional risk

averse attitude, the managers render minimax regret approaches very important in
identifying robust solutions, i.e., solutions that perform well for any realization
of the uncertain demand parameters.” Based on this, he presents a number of
minimax regret formulations for the multi-item newsvendor problem with a single
budget constraint, when the demand distribution is completely unknown. Demand
uncertainty is captured by means of discrete and continuous scenarios.

In discrete demand scenarios, let DS(i) be the collection of all possible demand
realizations for item i, i = 1,2, . . . ,n. Then, the solution to any of the multi-item
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problems that will be stated below must be n-tuple in DS(1)×DS(2)× . . .×DS(n).
We consider three different objective functions.

• Absolute robustness. This approach attempts to find an n-tuple of order quantities
that maximize the worst case profit over all possible demand realizations.

max
(Q1...Qn)∈DS(1)×DS(2)×...×DS(n)

min
(d1...dn)∈DS(1)×DS(2)×...×DS(n)

n

∑
i=1

πi(Qi,di)

s.t.
n

∑
i=1

ciQi ≤W .

• Robust deviation. This formulation provides a solution that minimizes the
maximum profit loss due to demand uncertainty. The objective function is:

min
(Q1...Qn)∈DS(1)×DS(2)×...×DS(n)

max
(d1...dn)∈DS(1)×DS(2)×...×DS(n)

×
n

∑
i=1

πi(di,di)−πi(Qi,di) s.t.
n

∑
i=1

ciQi ≤W ,

where πi(di,di)− πi(Qi,di) stands for the profit that could be realized if there
was no demand uncertainty less the profit made for the order quantity Qi.

• Relative robustness. This minimizes the relative profit loss per unit of profit that
could be made if there was no demand uncertainty.

min
(Q1...Qn)∈DS(1)×DS(2)×...×DS(n)

max
(d1...dn)∈DS(1)×DS(2)×...×DS(n)

×
n

∑
i=1

πi(di,di)−πi(Qi,di)

πi(di,di)
s.t.

n

∑
i=1

ciQi ≤W .

In the continuous demand scenario, the demand in (1.4) is bounded by D and D.
Then the minmax problem becomes:

max
Qi

min
di∈[Di,Di ]

n

∑
i=1

πi(Qi,di)

s.t.
n

∑
i=1

ciQi ≤W ,

Qi ∈ [Di,Di].

This problem can be reduced to a continuous knapsack problem, and solved by
the proposed algorithm in this paper. Then, the optimal quantity is:

Q∗ =
(vi − gi)D+(pi − vi +Bi)D

pi − gi +Bi
. (1.25)
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Similarly, Choi et al. (2011) considered a risk-averse MPNP under the
law-invariant coherent measures of risk. They have shown that for heterogeneous
products with independent demands, increased risk aversion leads to decreased
orders, and derived closed-form approximations for the optimal order quantities.
Also, they have shown that risk-neutral (maximize the expected profit) solutions
are asymptotically optimal under risk aversion as the number of products tends to
be infinity. This result has an important business implication: companies with many
products or product families with low demand dependence need to look only at
risk-neutral solutions even if they are risk averse. For a risk-averse newsvendor with
dependent demands, they showed that in a two-product model with positively depen-
dent demands, the optimal order quantities are lower than for independent demands,
while for negatively dependent demands, the optimal order quantities are higher.

In another paper where risk was taken into consideration, Ozler et al. (2009)
consider a single-period MPNP, where a retailer determines the optimal order
quantities of N different products having stochastic demand. Furthermore, they
integrate risk considerations (i.e., the risk of earning less than a desired target profit
or losing more than an acceptable level due to demand uncertainty) through a Value
at Risk (VaR) approach. VaR is a measure of downside risk and is defined as the
probability of earning lower than the target profit value is less than or equal to a
threshold probability value.

In order to illustrate the approach, the authors first derive a compact expression
for the distribution of the profit for two products with a joint demand distribution,
and explicitly derive the VaR constraint in terms of the decision variables Q1

and Q2. The formulated problem turns out to be a mixed-integer programming
formulation with a nonlinear objective function under mixed linear and nonlinear
constraints. They analyze the conditions for the feasibility of this problem and
present a mathematical programming formulation that determines the optimal order
quantities. The authors also consider a correlated demand structure, and by solving
the two-product problem, they show that the expected profit is higher when two
products with negatively correlated demands are used under a VaR constraint. On
the other hand, when the VaR constraint is ignored, demand correlations have no
impact on the expected profit.

The authors also attempt to extend the procedure outlined for the two product
case to more than two products. In this line, they develop an approximation
method in case where there are N products with independent, normally distributed
demands. They utilize the central limit theorem to determine the distribution of
profit approximately and express VaR constraint by using the normal approximation.
Similar to the two-product setting, they analyze the feasibility conditions and
present a mathematical programming approach that yields optimal order quantities.
The case of the MPNP with a correlated demand structure is left for future research.

Mieghem and Rudi (2002) introduce a class of models called newsvendor
networks, which allow for multiple products, multiple processing, and storage points
and investigate how their single-period properties extend to dynamic settings. Such
a model provides a parsimonious framework to study various problems of stochastic
capacity investment and inventory management, including assembly, commonality,
distribution, flexibility, substitution, and transshipment.
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Consistent with the previous multidimensional newsvendor models, the
newsvendor networks are defined by a linear production technology, which
describes how inputs (supply) is transformed into outputs of fill end–product
demand, a linear financial structure, and a probability distribution of end–product
demand. This paper continues by incorporating multiple storage points into the
multidimensional newsvendor model.

We describe the features of a newsvendor network briefly. Before the demand is
realized, a set of “ex-ante” activities are performed on the inputs and their results are
stored in “stocks” or inventories. After the demand is realized, “ex-post”activities
process stocked inputs into demanded outputs using resources. In addition to being
constrained by demand, the sales or the output rate is also constrained both by
input stock levels and by the resource capacities, denoted by vectors S and K.
The ex-ante activities generate the cost vector, v; the ex-post activities generate
the marginal value vector p− v; the units carried over to subsequent period incur
a holding cost h. Let cK denote per unit capacity investment cost and x denote the
flow units. For example, activities 3 and 2 deplete stocks 1 and 2, respectively, and
consume Resource 2’s capacity at a rate of α−1 and 1; activity 1 depletes stock
1 and consumes resource 1. Hence, the inventory constraints are: x1 + x3 ≤ S1

and x2 ≤ S2, while the capacity constraints are x1 ≤ K1 and x2 + α−1x3 ≤ K2.
Newsvendor networks are thus about three decisions: capacity investment decisions
K, input inventory procurement decisions S, and activity decisions x(K,S,D).

The objective is to maximize the expected operating profit, which is the net value
from processing minus the shortage penalty cost and holding cost:

Π(K,S) = E max
x∈X(K,S,D)

[
(p− v)X −B(D−RDx)+− h(S−RSx)+

]
,

where RS and RD are input–output matrices, and A is the capacity consumption
matrix. The set of feasible activities are constrained by supply S, demand D, and
capacity K:

X(K,S,D) = x ≤ 0 : RSx ≤ S,RDx ≤ D,Ax ≤ K.

The expected firm value to be maximized is :

V (K,S) = Π(K,S)− vS− cKK.

This paper presented single period optimality conditions and showed that they
retain their optimality in a dynamic setting, so that a stationary base-stock policy is
optimal. Besides, it also shows that as in most inventory settings, lost sales are more
tractable in newsvendor networks than backlogging. The discussion suggests that
the culprits are discretionary activities or joint ex-post capacity constraints, both of
which make the order-up-to levels of inputs dependent on backlog in a nonlinear
manner.
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1.2.2 Multiple Constraints

Similar to the MPNP with a single constraint, the MPNP with multiple constraints
has also been investigated by a few researchers. Ben-Daya and Raouf (1993)
first presented an analytical solution procedure for a two-constraint multi-item
newsvendor problem in which all items’ demands are uniformly distributed. Lau
and Lau (1995) presented a Lagrangian-based numerical solution procedure of a
multi-item newsvendor problem with multiple constraints. Their proposed solution
procedure is an adaptation of the “Active Set Methods” which consists of two basic
components:

• Component A. For a given subset W(called the “working set”) of all the resource
constraints, component A solves the equality-constrained problem:

Max
N

∑
i=1

E[πi(Qi)]

s.t.
N

∑
i=1

ri, jQi ≤ R j, j = 1,2, ...M, (1.26)

where ri, j is the coefficient of resource j of item i and R jis the amount available
of resource j.

• Component B. This is the procedure for defining and updating the working set
W for each altered component A. This component A and component B cycle is
repeated until the optimal condition is met. The authors provide mathematical
details and numerical examples to validate this method.

Lau and Lau (1997), in the sequel of their earlier works, proposed a three-
step procedure that used subjective probability elicitation to supplement whatever
empirical data is available to construct demand distribution functions. Since the
typical multi-item newsvendor problem solution procedure requires many repeated
evaluations of the demand’s inverse cdfs’, the authors suggest using Tocher’s general
“inverse cdf” to fit the distribution function:

F−1
T (P) = D

= a+ bp+ cp2+α(1− p)2ln(p)+β p2ln(1− p), (1.27)

where five parameters (a,b,c,α , and β ) could be determined by least-squares fitting.
Similar to the normal distribution, F−1

T (P) has a negative tail, which is eliminated
by using the following modification:

F−1
M = D = max[0,F−1

T (P)]. (1.28)

Abdel-Malek and Areeratchakul (2007) and Areeratchakul and Abdel-Malek
(2006) developed an approximate solution procedure to deal with this type of
problem. It is based on a triangular presentation of the areas resulting from integrals
that are included in the objective function, which facilitates expressing the objective
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function in quadratic terms. One can solve this problem using familiar linear
programming packages. The authors have shown that the objective function can
be expressed in the following quadratic form:

MaxZ =
N

∑
i=1

(
A(.)

i x2
i +B(.)

i xi +C(.)
i

)
, (1.29)

where expressions A(.)
i , B(.)

i , and C(.)
i are constants to be determined for each product

according to its demand probability distribution. In order to get the quadratic form
above, we first need to approximate the integral of the cumulative distribution
function using triangular approach as:

∫ xi

0
F(Di)dDi ≈ 1

2
(xi − xl,i)(Δi(xi − xl,i)), (1.30)

where xi − xl,i is the length of the triangle base, F(xi) = Δi(xi − xl,i) is the height
of the triangle with respect to xi, and Δi represents the slope of the triangle. For
more details about these parameters under different distribution functions, readers
can refer to the paper.

Abdel-Malek and Montanari (2005b) discussed a solution procedure for the
MPNP with two constraints. The methodology in the paper is based on analyzing the
dual of the solution space as defined by the constraints of the problem. In order to
avoid infeasible (negative) solutions, the authors propose that we begin by defining
the possible regions of the dual of the solution space. The corresponding solution
method is selected based on the area which the resource point is in. Finally, the
authors present two numerical examples to illustrate the application of the proposed
approach; the first one considers the case where only one of the constraints is
binding, and the second one analyzes the case where both constraints are binding.

In addition to the methods mentioned above, Niederhoff (2007) utilized the
separability of the objective function and used convex separable programming to
minimize the expected cost and calculate the optimal order quantities. Due to
the properties of the piecewise linear approximation method, this problem can
be studied without any specific distribution. This method also provides sensitivity
analysis which can give us some important insights.

1.2.3 Other Constrained MPNP Approaches

In addition to the classical constrained approaches, several authors focused on the
applications of the MPNP to address specific issues. Khouja and Mehrez (1996)
formulated a MPNP under a storage or budget constraint such that progressive
multiple discounts are offered to sell excess inventory. They provided different
algorithms depending on whether the optimal order quantities are large or small.
The authors assumed that there is a perfect and positive correlation between the
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demand at the jth discount price and the demand at the nondiscount price. If the
demand for the product at the nondiscount price is high, then discounting the price
of the product results in a proportionally high additional demand. Observations on
the solution to the constrained problem show that storage (or budget) constraint
in an MPNP reduces the service levels (i.e., probability of satisfying demand)
and order quantities of all products, when compared to the corresponding levels
for the unconstrained problem. Furthermore, the numerical examples that compare
multiple and single discount solutions indicate that using multiple discounts instead
of discounting just once to the salvage value may result in a different optimal
solution.

Shi and Zhang (2010), Shi et al. (2011) and Zhang (2010) investigated the MPNP
with supplier quantity discounts and a budget constraint, and the effect of these two
features on the optimal order quantities. In this line, Zhang presented a mixed integer
nonlinear programming model to formulate the problem. The proposed Lagrangian
relaxation approach is demonstrated by means of numerical tests. Finally, the
problem is extended to multiple constraints, including space or other resource
limitations. It is assumed that suppliers provide all-quantity discounts, and the
newsvendor faces uncertain demand for multiple products. Besides, the probability
density function for each product is assumed to be given.

To solve the problem, the authors use the Lagrangian heuristic and present
methods to find upper and lower bounds, as well as an initial feasible solution.
They relax the budget constraint (instead of discount constraints that potentially
give a tighter dual bound) as it results in a classical newsvendor subproblem
with discount constraints. The computational results indicate that the algorithm is
extremely effective for the newsvendor model with supplier quantity discounts and
a budget constraint (in terms of both solution quality and computing time). The
computational results for the multi-constraint case also indicate that the proposed
approach performs well for the problems with multiple constraints.

In a different extension, Chen and Chen (2010) developed a multi-product
newsvendor model under a budget constraint with the addition of a reservation
policy. Reservation policies reduce the demand uncertainty of newsvendor-type
products. Under the reservation policy studied in this paper, a discount rate is offered
to consumers in order to induce them to make a reservation and buy in advance.
The authors propose a general algorithm, namely the MCR algorithm, which finds
the optimal order quantity and the discount rate necessary to maximize the total
expected profit under the budget constraint. In order to illustrate the efficiency of
the proposed algorithm, MCR, they solve a numerical example and compare the
classical multi-product budget-constraint newsvendor model (CMC model) with
the multi-product budget-constraint newsvendor model with the reservation policy.
Numerical results show that the total expected profit obtained from the MCR is
greater than that of CMC. This is tied to the reservation policy proposed in the
model. The difference between the profits of these two models is treated as the value
of information. Thus, we can conclude that the decision to adopt the reservation
policy depends on the trade-off between the information value and the cost incurred
to establish the willingness function and extra-demand functions.
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Aviv and Federgruen (2001) address the multi-product inventory system problem
with random and seasonally fluctuating demands. Moreover, they extend the anal-
ysis to a multi-echelon problem, two stages specifically. This paper contributes to
the literature on delayed product differentiation strategies and makes an assumption
that “Demands in each period follow a given multivariate distribution with arbitrary
correlations between items.” In addition, “....as in virtually all inventory models, the
demands in different periods are independent and their distributions are perfectly
known.” Unsatisfied demand is backlogged; each cost component of a product is a
function of the product’s inventory position(including inventory on hand, blanks
being transformed into units of the final product and minus the backlogs). The
objective is to minimize expected discounted cost over a finite or infinite horizon
or to minimize the long-run average value.

To include all the cost components, this paper defines a expected value of costs
for jth item in a period of type k as

G
k
j = α jEh j

([
y j − dk

j − dk+1
j . . .− d

k+l j
j

]+)

+p j

([
dk

j + dk+1
j + . . .+ d

k+l j
j − y j

]
+
)
,

where y j is the inventory position of item j at the beginning of a period, dk
j is the

demand at period k for item j, h j is the holding cost, and α j is the discount factor.
The model can be formulated as a Markov Decision Process with countable state
space S = {(x,k), x is integer, k = 1, ...,K} and finite action sets A(x,k) = {y : x ≤ y
and ∑l

j=1 y j ≤ ∑l
j=1 x j + bk}. To solve this problem, the authors propose a lower-

bond approximation and heuristic strategies. In the case of a 2-stage echelon, i.e.,
production has positive lead time, they simply modified Rk(.), which is the one-
step cost function in a single-item model, and introduced the system-wide echelon
inventory position of blanks.

Chung et al. (2008) considered the items with short life cycles or seasonal
demands. They developed a two-stage, multi-item model incorporating the reac-
tive production that employs a firm’s internal capacity. Reactive capacities are
preallocated to each item in preseason stage and cannot be changed during the
reactive stage. The objective is expected profit maximization. A simple algorithm
for computing optimal policies is presented. This paper aims to help managers
understand how employing internal capacity during reactive stage can reduce the
impact of the poor demand forecasts. Without fixed costs, the optimal production
vector for the reactive stage is a simple function of the production vector, Q, for
the preseason stage and the capacity allocation vector, Z, for the reactive stage. By
analyzing the KKT conditions, the optimal solution and the Lagrange multiplier, λ ∗,
can be determined.

Casimir (2002) used MPNP to determine the value of incomplete information.
He focused on the value of information in three newsvendor models: the basic
model with no constraints, the model with budget or capacity constraints, and the
model with substitutability. The value of incomplete information is considered in the
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form of product-mix information and global information. Product-mix information
implies total demand is unknown, but the distribution over products is known
exactly. In this case, the overall optimal order quantity is determined initially,
and then the optimal order quantity for each single item is determined from the
actual value. In the case of global information, total demand is known, but its
distribution over the products is unknown. Then, the optimal order quantity for each
individual item with the given total demand has to be determined. Here, the authors
compute the value of incomplete information by comparing the expected profits of
the two cases, and do not consider the performance criteria. Besides, rather than
the computation of optimal order quantities, results are computed numerically to
provide a research framework for the value of information. Their assumptions are:
(1) demand is normally distributed, (2) demand for different items is independent,
(3) the salvage value for unsold items is zero, (4) there is no penalty for unmet
demand, (5) price, cost, average demand, and standard deviation of demand for all
products are the same, (6) for the model with budget constraint, only two items are
considered, (7) analyzing substitutability, only a two-item newsvendor problem is
considered, and it is assumed that the customer takes a single unit of the substitution
product, and (8) substitutability is assumed to be symmetric.

In the model without additional complications, it is shown that the value
of product-mix information increases with the number of items, whereas the
value of global information decreases with the number of items. The value of
both product-mix information and global information decreases with a budget
constraint. Furthermore, the value of perfect information also decreases with a
budget constraint. The probability of substitution decreases the value of product-
mix information such that it is zero with complete substitution, and increases the
value of global information so that it is equal to the value of perfect information
with complete substitution.

Finally, Zhang and Hua (2010) consider a system where the products are
procured from the supplier with a fixed-price contract. Under this procurement
strategy, the retailer does not order enough products to avoid the risk raised from
demand uncertainty (i.e., lower realized demand). The authors here apply a portfolio
approach to MPNP under a budget constraint, where the retailer’s procurement
strategy is designed as a portfolio contract. In this case, each newsvendor product
can be procured from the supplier with dual contracts: a fixed-price contract and an
option contract. The retailer can lower the inventory risk by utilizing the flexibility of
the option contract. On the other hand, it in turn results in additional costs compared
to fixed-price contracts, since unit reservation and execution cost of option contract
is typically higher than unit cost of a fixed-price contract. In the paper, the objective
is to maximize the total expected profit of the retailer through determining the
optimal order quantities of products procured with portfolio contracts. The authors
consider a single-period model and assume that the retailer sells n products with
independent and stochastic demands. All demands are considered to be nonnegative.
The portfolio contract consists of a fixed-price contract and an option contract. In the
fixed-price contract, the retailer pays a unit fixed cost for each product he procured
from the supplier. In the option contract, to reserve certain order quantity, the retailer



1 The Multi-product Newsvendor Problem. . . 21

prepays a unit reservation cost up-front. Then, the retailer pays an execution cost for
each unit purchased up to the option reservation level. The retailer loses the initial
payment if he does not exercise the option. Related to those, it is further assumed
that:

• The total cost of option contract (reservation plus execution cost) is larger than
the cost of fixed-price contract.

• The reservation cost of option contract is smaller than the pure procurement cost
of the fixed-price contract.

Following the problem formulation, the authors establish the structural properties
of the optimal solution (e.g., the concavity of expected profit function) and propose
a polynomial solution algorithm of o(n) order. The main advantage of the proposed
algorithm is that it does not depend on a specific demand distribution and it
is applicable to general continuous demand distributions. Finally, they conduct
numerical studies and sensitivity analysis to show the efficiency of the proposed
algorithm, as well as compare three procurement contracts: fixed-price contract
(FC), option contract (OC), and portfolio contract (PC). It is evident that the
newsvendor model with PC, generates significant improvement compared to FC
and OC models. Furthermore, it is shown that following the increase in the available
budget, the performance gap between FC and PC models decreases, while the gap
between OC and PC increases.

Vaagen and Wallace (2008) study risk hedging in fashion supply chains. They
consider two states of the world: State1 when a variant of a product becomes
popular and the others go out of fashion, and State2 is when the reverse happens.
In this paper, Vaagen and Wallace provide a portfolio building decision model
under uncertainty by combining The Markowitz and the newsboy models into a
stochastic optimization model. This model tries to minimize the profit risk using
semi-variance. The results of the different scenarios show that hedging portfolios
gives any company a competitive advantage. We can also conclude that the uncertain
information such as demand estimates and trend information for a certain group of
products are not as important in the fashion industry as it is in other industries.
The best approach in this case is to define and release hedge portfolios. This model
can be extended to include substitutability, which is discussed by Cheng and Choi
(2010).

1.3 Substitute Products

Retailers often offer product substitutes to prevent customer loss. This substitution
can be perfect, partial, or downward. Most of the early works used two-way
substitution and introduced heuristics to find the optimal order quantities. Recent
works, however, focus more on one-way substitution. This type of substitution arises
in real life, for example, in the semiconductor industry; a higher capacity chip can
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be used to satisfy demands for lower capacity chips. Current literature in this stream
can be classified as those focusing on one-way substitution or two-way substitution.

1.3.1 One-Way Substitution

Bassok et al. (1999) concentrated on full downward substitution among the various
structures of substitution. Considering that there are N products and N demand
classes, full downward substitution implies that excess demand for class i can be
satisfied using stocks of product j for i ≥ j. The authors discuss a two-stage profit
maximization formulation for the multi-product substitution problem. In the first
stage, the orders are placed (before demands are realized) , and in the second stage
the products are allocated to demands (after demand is observed) (i.e., allocation
problem). The authors assume that there are N products and N demand classes,
and the demands for each class are stochastic. The order, holding, penalty, and
salvage costs are assumed to be proportional, and the revenue is linear in the
quantity sold. It is further assumed that the substitution cost is proportional to the
quantity substituted. Delivery lags and capacity constraints are ruled out. Finally,
it is assumed that the revenue earned for each unit of satisfied demand in class i
depends only on i and not on the type of product j used to satisfy the excess demand.
The authors assume that: (a) it is more profitable to satisfy unmet demand of class i
than of class j, for i < j; (b) the effective salvage value of product i is not less than
that of product j, for i < j; and (c) the substitution of product i for demand class j
is profitable.

Let I(−→x ) be the maximum single period profits and P(−→x ,−→y ) be the expected
single period profits when the starting inventory before placing the order is −→x and
after ordering is raised to −→y . Then, I(−→x ) = max(

−→y ≥ −→x )P(−→x ,−→y ). Let
−→
d =

(d1, . . . ,dN) be a vector of realized demands. Define F(
−→
d ) = F1,2,...,N(d1, . . . ,dN)

as the joint distribution of demands from class 1 to N. Let G(−→y ,
−→
d ) be the profits

for a given stock level, −→y , and the realized demand,
−→
d . Let wi j be the quantity of

product j allocated to the demand class j. Then

P(−→x ,−→y ) =−
N

∑
k=1

ck(yk − xk)+
∫

RN
+

G(−→y ,
−→
d )dF(

−→
d ), (1.31)

where:

G(−→y ,
−→
d ) = max

ui,vi,w ji

N

∑
i=1

i

∑
j=1

a jiw ji +
N

∑
i=1

sivi −
N

∑
i=1

πiui.

Subject to

ui +
i

∑
j=1

wji = di for i = 1, . . . ,N,vi +
N

∑
i=1

wji = yi for i = 1, . . . ,N. (1.32)
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The authors present a greedy algorithm for the allocation problem, and give a
new and compact notation of writing the first differentials of the profit function
with respect to stock levels. They prove that given a starting inventory level, the
allocation algorithm will maximize profits in G(−→y ,

−→
d ). In addition, the profit

function P(−→x ,−→y ) is proven to be concave and submodular. They also propose
an iterative algorithm to compute the order points for a two-product problem, and
develop bounds on the optimal order points. Finally, they present a computational
study for the two-product problem and show that the benefits of solving for the
optimal quantities, when substitution is considered at the ordering stage, are higher
with high demand variability, low substitution cost, low profit margins, high salvage
values, and similarity of products in terms of prices and costs.

Smith and Agrawal (2000) have analyzed the impact of retail assortments on
inventory management and customer service. They focused on product variety
in retailing environment, where the customers can often be satisfied by one of
several items, e.g., light colors of T-shirts in apparel. In this paper, they develop
a probabilistic demand model for items in an assortment that capture the effects of
substitution and provide a methodology for selecting item inventory levels so as to
maximize total expected profit, subject to given resource constraints. Because of
substitution, the inventory levels for products in an assortment must be optimized
jointly.

They consider inventory policies that reinitialize at the start of each fixed cycle,
assuming lost sales occur if there is a stockout before the end of the cycle.
The authors also analyze several illustrative numerical examples to demonstrate
the insights, such as, substitution effects can reduce the optimal assortment size,
and policies of ignoring substitution effects can be less profitable than those that
explicitly incorporate substitution effects. Similarly, Shah and Avittathur (2007)
studied the effects of retail assortments on inventory control. Different from
Smith,he defined a demand cannibalization and substitution index and assumed the
demand to be a Poisson process (similar to Anupindi et al. 1998). The numerical
results showed that when the fixed cost and salvage value of a customized product
is high and its incremental profits are low, it is not feasible to carry customized
products.

In addition, Smith and Agrawal (2000) also studied a “static” substitution model.
They assumed that the choice by the customer is independent of the current
inventory levels and the customer does not accept a second choice. Mahajan and
van Ryzin (2001) used a choice process based on a utility that is assigned by the
customer to each product. This utility is interpreted as the net benefit to the customer
from purchasing or not purchasing a product. In this case, the information available
to the retailer is only the probability of a sample path ω = {Ut : t + 1, . . . ,T},
where T is the number of customers. The number of sales is dependent on the
initial inventory level and the sample path. The authors then introduce a sample
path gradient algorithm to obtain the optimal results.
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Dutta and Chakraborty (2010) studied the newsboy problem with one-way
substitution where the demand is fuzzy. The membership function of demand of
product i is represented as:

μD̃t (x)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Li(x) =
x−Di

Di−Di
, Di ≤ x ≤ Di

Ri(x) =
Di−x

Di−Di
, Di ≥ x ≥ Di,

0, otherwise,

(1.33)

where the demand is D̃i = (Di,Di,Di). The fuzzy objective function is complex
and the concavity proof is difficult; therefore, Dutta and Chakraborty developed
an algorithm to find the optimal order quantity. They defined four situations of
demand in relation to the Q∗ and run the complete procedure for each one of these.
They ran some numerical examples to provide validation for their method and made
recommendations for further research to include salvage value and holding cost as
well as two-way substitution.

Considering a stylized scenario for two products, without a loss of generality,
assume that product 1 substitutes for product 2 one-to-one, and if there is a
substitution, this item is sold at the price of product 2. We also assume that the
selling price of the substituted item is higher than the cost of the substitute as well
as its salvage value. Then the actual end of period profit for the buyer is:

Case 1.
2
∑

i=1
[pixi −viQi +gi(Qi −xi)] if x1 ≤ Q1;x2 ≤ Q2

Case 2. p1Q1 + p2x2 −
2
∑

i=1
viQi +g2(Q2 −x2)−B1(x1 −Q1) if x1 > Q1;x2 ≤ Q2

Case 3. p1x1 + p2Q2 −
2
∑

i=1
viQi + p2Min(x2−Q2,Q1 −x1) if x1 ≤ Q1;x2 > Q2

+g1[Q1 −x1 − (x2 −Q2)]
+−B2[x2 −Q2 − (Q1 −x1)]

+

Case 4.
2
∑

i=1
piQi −viQi −Bi(xi −Qi) if x1 > Q1;x2 > Q2

(1.34)

and based on this, the expected profit function is:

E[π(Q1,Q2)] = E

[
[p1Min(x1,Q1)+ p2Min[x2,Q2 +(Q1 − x1)

+]− v1Q1 − v2Q2

+ g1[Q1 − x1 − (x2 −Q2)
+]++ g2(Q2 − x2)

+−B1(x1 −Q1)
+

− B2[x2 −Q2 − (Q1 − x1)
+]+

]

= p1

[∫ Q1

0
x1 f1(x1)dx1 +

∫ ∞

Q1

Q1 f1(x1)dx1

]

+ p2

[∫ Q2

0
x2 f2(x2)dx2 +

∫ ∞

Q2

Q2 f2(x2)dx2
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+

∫ Q1

0

∫ ∞

Q2

(Q1 − x1) f (x1,x2)dx2dx1

]

− v1Q1 − v2Q2 + g1

[∫ Q1

0

∫ Q2

0
(Q1 − x1) f (x1,x2)dx2dx1

+

∫ Q1+Q2−x2

0

∫ Q1+Q2

Q2

(Q1 +Q2 − x1 − x2) f (x1,x2)dx2dx1

]

+ g2

∫ Q2

0
(Q2 − x2) f2(x2)dx2 −B1

∫ ∞

Q1

(x1 −Q1) f1(x1)dx1

− B2

[∫ ∞

Q1

∫ ∞

Q2

(x2 −Q2) f1(x1,x2)dx2dx1

+

∫ Q1

0

∫ ∞

Q1+Q2−x1

(x1 + x2 −Q1 −Q2) f (x1,x2)dx2dx1

]
. (1.35)

Cai et al. (2004) used a similar expected profit function as above and proved that
it is concave and submodular. Using this property, the optimal order quantities can
be found by setting the derivatives with respect to Q1 and Q2 equal to zero. If we
define G(Q1,Q2) =

∫ Q1
0

∫ Q1+Q2−x1
0 f (x1,x2)dx2dx1, the following holds:

F1(Q
∗
1)+

(p2 +B2)− g1)

(p1 +B1)− (p2 +B2)
G(Q∗

1,Q
∗
2) =

(p1 +B1)− v1

(p1 +B1)− (p2 +B2)
, (1.36)

F2(Q
∗
2)+

(p2 +B2)− g1)

(p2 +B2)− g2)

[
G(Q∗

1,Q
∗
2)−F(Q∗

1,Q
∗
2)

]
=

(p2 +B2)− v1

(p2 +B2)− g2
. (1.37)

Fi(Q∗
i ) represents the probability of all of the demand for item i being sat-

isfied when the stock level is Q∗
i . G(Q∗

1,Q
∗
2) is the probability that the total

demand is satisfied given that item 1 was substituted for item 2. F(Q∗
1,Q

∗
2) =∫ Q1

0

∫ Q2
0 f (x1,x2)dx2dx1 is defined as the probability that the demand for each item

is satisfied without any substitution. Finally, F2(Q∗
2)+G(Q∗

1,Q
∗
2)−F(Q∗

1,Q
∗
2) is the

probability that all of the demand for item 2 is satisfied using either of the items.
Cai et al proved four different properties of the optimal order quantities. Property 1
shows that as the unit price of item i increases, Q∗

1 decreases and Q∗
2 increases and,

evidently Q∗
2 decreases as the unit price of item 2 increases. Property 2 states that

when the price of each item increases, their respective optimal quantities decrease.
Conversely, the increase in price of item 1 decreases the optimal quantity for item 2.
Property 3 states a similar argument related to salvage cost. Property 4 indicates that
the optimal order quantity of each item is linearly related to their respective mean
demands. Property 5 states that the variance of item i affects the optimal quantity of
item j reversely. In this paper, the authors showed that the expected profits and the
fill rate can be improved by using substitution.
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Table 1.1 Notations for two-way substitution

Symbol Meaning

R Review period
Li Replenishment lead time
Li +Ri Replenishment cycle
fxi(x0) Density function of demand over the replenishment

cycle for product i
βi Parameter that satisfies, σi = βiσ1

r Inventory holding cost
Si Order up-to level
Ki Safety factor, Si = xi +Kiσi

0 < αi j < 1 Probability that a costumer will substitute j for a unit
of i

fu(u0) Density function of standard normal distribution
Gu(k) Tabulated function of the standard normal distribution

1.3.2 Two-Way Substitution

Unlike the one-way substitution, in two-way substitution case, each of the items can
be used to supply the demand for another one. This only occurs when the demand
for one item is higher than the quantity ordered and the demand for the substitute
item is lower than the quantity ordered. McGillivray and Silver (1978) and Parlar
and Goyal (1984) assumed whenever substitution is possible, there is a probability
that a customer will accept a substitute product. In Parlar’s case, this probability
was between 0 and 1, whereas it was fixed for McGillivray. In McGillivray’s paper,
the demand, xi , is assumed to be normally distributed with a mean of xi and a
standard deviation of σi = βiσ1. The order up to level is given as Si = xi +Kiσi

and the expected shortage per replenishment cycle is ESPRCi = σiGu(Ki). The unit
variable costs and shortage cost of the substitutable, items are also assumed to be
identical. This assumption is justified by the fact that in reality when two items are
substitutable they will have similar prices. Different levels of substitutability were
considered in the paper. The notation used in their paper is shown on Table 1.1.

We know that Gu(k) =
∫ ∞

k (u0−k) fu(u0)du0, and dGu(Ki)
dKi

=−Pu≥(Ki). By setting

the partial derivative of ETRC with respect to Ki to 0, we find that Pu≥(Ki∗) = Rvr
B

for i = 1, . . . ,N. Using the standard normal property fu(u0) = Pu≥(u0) +Gu(u0),
ETRC can be reduced to:

ET RC(K∗
1 ,K

∗
2 , ..,K

∗
n ) =

1
2

DR2vr+σ1B fu(K
∗)

N

∑
i=1

βi. (1.38)

If we assume that there is full demand transferability and all items are perfect
substitutes of each other, ai j = 1, a shortage happens only when the total demand for
all items is smaller than the total stock up-to level. The total shortage and on-hand
inventory decrease the same amount by the transfer sales; therefore, the total net
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stock stays the same as the general case. Consequently, the expected total relevant
costs with perfect substitution is:

ETRCt(K
∗
t1,K

∗
t2, ..,K

∗
tn) =

1
2

DR2vr+σ1B
√

∑β 2
i fu(K

∗). (1.39)

The minimum cost equation is the same as the single item newsvendor model
with the demand equivalent to the total demand of substitutable item problem.
The savings from the substitutability can be expressed as ETRC(K∗

1 ,K
∗
2 , ..,K

∗
n )−

ETRCt(K∗
t1,K

∗
t2, ..,K

∗
tn). Given (1.38) and (1.39) , the maximum possible savings

will occur when substitutability, ai j, is equal to 1. Thus,

MPS = σ1B

(
∑βi −

√
∑β 2

i

)
fu(K

∗)), and K∗
1 = ...= K∗

N = K∗ = ∑βiK∗
ti√

∑β 2
i

.

(1.40)
In addition to these results, the authors (through a numerical analysis for a two

item model) show that when both items are substitutable to each other, the potential
savings increase when K∗ increases. In the case of one way substitution, where
a12 = 0 and a21 = 1, the optimal policy is to stock item 1 only. This theorem also
holds when 0 < a12 < 1 and a21 = 1. There is no analytic expression for ESPRC
when both items are partially substitutable to each other. Hence, McGillivray and
Silver simulated a two-item inventory problem with substitutability. As a result,
they demonstrated that when substitutability levels are between 0 and 0.75, the
model acts as an independent item inventory control problem. Furthermore, a cost
penalty larger than 20% of the MPS only occurs when one of the items is a perfect
substitute of the other. For the case of partial substitutability, a heuristic approach
was developed and tested.

In relation to the heuristic approach, the expected transferred demands were
defined as E(T21) = a21ESPRC2 and E(T12) = a12ESPRC1 for items 1 and 2,
respectively. This approach tries to find the optimal values for K and S using
Pu≥(K∗

i ) = Rvr/[B(1− a ji)+ a jiRvr] and Si = [xi + a jiσ jGu(Kj)] +Kiσi for i �= j
i = 1, . . . ,N. This two-item model can also be extended to include multiple items
and it is computationally straightforward.

Netessine and Rudi’s paper Netessine and Rudi (2003) examines the optimal
inventory stocking policies for a given product line under the notion that consumers
who do not find their first-choice product in the current inventory might substitute
a similar product for it (consumer-driven substitution). Namely, there is an arbitrary
number of products and each consumer has a first choice product. If this product is
out of stock, the consumer might choose one of the other products as a substitute.

Let αi j denote the probability that a customer will substitute j for a unit of i. The
demand vector, D = (D1, ...,Dn), follows a known continuous multivariate demand
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distribution with positive support. In the centralized inventory model, the expected
profit of the company who manages n products is:

π = E ∑
i

[
pi min

(
Di +∑

j �=i

αi j(D j −Q j)
+,Qi

)

−viQi + gi

(
Qi −

(
Di +∑

j �=i

αi j(Di −Q j)
+

))+]
.

The demand vector for i is DS
i = Di +∑ j �=i αi j(D j −Q j)

+, where the superscript
S indicates that the effect from substitution has been accounted for. In other words,
DS

i is the sum of the first-choice demand and demand from substitution. It is
conventional to define ui = pi − vi, the unit underage cost; and oi = vi − gi,the unit
overage cost. This paper proves that the first-order necessary optimality conditions
of the centralized problem are given by:

Pr(Di < Qc
i )−Pr(Di < QC

i < DS
i )

+∑
j �=i

ui + o j

ui + oi
αi jPr(DS

j < QC
i ,Di > QC

i ) =
ui

ui + oi
.

In the decentralized inventory model, the profit for each firm i is:

πi = E
[
uiD

S
i − ui(D

S
i −Qi)

+− oi
(
Qi −DS

i

)]
, i = 1, ...n.

This paper also shows that any Nash equilibrium is characterized by the
following optimality conditions:

Pr(Di < Qd
i )−Pr(Di < Dd

i < DS
i ) =

ui

ui + oi
.

After comparing the optimal ordering quantity Qc
i and Qd

i , the paper finds that:
there exist situations when Qc

i ≥ Qd
i for some i, it is always true that Qc

i ≤ Qd
i for

at least one i, suppose that all the costs are independent and identically distributed,
and the consumers are equally likely to switch to any of the (N −1) products for all
i, j. Then Qc

i ≤ Qd
i for all i.

Nagarajan and Rajagopalan (2008) took a different approach and assumed the
demands of products to be correlated. They defined the total demand to be D, and
the demand portions of the products to be p, (1− p). Without loss of generality, D
is set to be 1, and the optimal order quantities for product 1 and 2 differ from the
general newsvendor solution by (1− γ). This indicates that the higher the fraction
of substitution, the lower the inventory levels. In the case of asymmetric costs and
random total demand, a fixed proportion, γi, of the customers looking for item i
when it is depleted will purchase the substitute and (1− γi) of them will not make a
purchase. If we let γ∗i =max{(pi+Bi)−(hi+2ci)/(p j+h j+Bi),1}, i, j = 1,2, i �= j
then, if γi ≤ γ∗i , the “partially decoupled” inventory policy is optimal. It is evident
that when product 2 is priced higher, the optimal base stock for product 1 is lower.
Especially, in the case of high enough p2 and h2, this base stock level can be
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below the mean or even close to zero. This means that the risk-pooling effect of
substitution reduces the inventories of both products. This effect is more apparent
for the inventory of the lower priced product. The authors show that this method can
easily be applied to the n-product and multi-period model.

Focusing on a stylized two-product setting, the end of period profit for the buyer
are:

Case 1.
2

∑
i=1

[pixi − viQi +gi(Qi − xi) if x1 ≤ Q1;x2 ≤ Q2

Case 2. p1Q1 + p2x2 −
2

∑
i=1

viQi + p1Min(x1 −Q1,Q2 − x2) if x1 > Q1;x2 ≤ Q2

+g2[(Q2 − x2)− (x1 −Q1)]
+−B1[(x1 −Q1)− (Q2 − x2)]

+

Case 3. p1x1 + p2Q2 −
2

∑
i=1

viQi + p2Min(x2−Q2,Q1 − x1) if x1 ≤ Q1;x2 > Q2

+g1[(Q1 − x1)− (x2 −Q2)]
+−B2[(x2 −Q2)− (Q1 − x1)]

+

Case 4.
2

∑
i=1

piQi − viQi −Bi(xi −Qi) if x1 > Q1;x2 > Q2

(1.41)

and based on this, the expected profit function is:

E[π(Q1,Q2)] = E

[
[p1Min(x1,Q1)+ p2Min[x2,Q2 +(Q1 − x1)

+]− v1Q1 − v2Q2

+ g1[Q1 − x1 − (x2 −Q2)
+]+ + g2(Q2 − x2)

+−B1(x1 −Q1)
+

−B2[x2 −Q2 − (Q1 − x1)
+]+

]

= p1

[∫ Q1

0
x1 f1(x1)dx1 +

∫ ∞

Q1

Q1 f1(x1)dx1

+

∫ Q1

0

∫ ∞

Q2

(Q2 − x2) f (x1,x2)dx2dx1

]

+ p2

[∫ Q2

0
x2 f2(x2)dx2 +

∫ ∞

Q2

Q2 f2(x2)dx2

+
∫ Q1

0

∫ ∞

Q2

(Q1 − x1) f (x1,x2)dx2dx1

]

− v1Q1 − v2Q2 + g1

[∫ Q1

0

∫ Q2

0
(Q1 − x1) f (x1,x2)dx1dx2

+

∫ Q1+Q2−x2

0

∫ Q1+Q2

Q2

(Q1 +Q2 − x1 − x2) f (x1,x2)dx1dx2

]

+ g2

[∫ Q1

0

∫ Q2

0
(Q2 − x2) f (x1,x2)dx2dx1
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+

∫ Q1+Q2−x1

0

∫ Q1+Q2

Q1

(Q1 +Q2 − x1 − x2) f (x1,x2)dx2dx1

]

− B1

[∫ ∞

Q1

∫ ∞

Q2

(x1 −Q1) f (x1,x2)dx1dx2

+

∫ ∞

Q1+Q2−x2

∫ Q2

0
(x1 + x2 −Q1 −Q2) f (x1,x2)dx2dx1

]

− B2

[∫ ∞

Q1

∫ ∞

Q2

(x2 −Q2) f (x1,x2)dx2dx1

+
∫ Q1

0

∫ ∞

Q1+Q2−x1

(x1 + x2 −Q1 −Q2) f (x1,x2)dx2dx1

]
.

(1.42)

Pasternack and Drezner (1991) proved that this function is concave and showed
that the optimal quantities can be found using a specific distribution and parameters.
Assuming that the revenue from substitution is different from the revenue from
regular sales, the authors also explored the effect of substitution on the order
quantities and showed that for a given revenue of t2 for each product 2 that is
substituted for product 1:

dQ∗
1

dt1
> 0 and

dQ∗
2

dt1
< 0, (1.43)

and a similar result holds for product 1. This result implies that if the revenue
from substitution of one product increases, the optimal order quantity for the
other product will decrease and the substitute product will increase. The authors
analytically solved the case for the one-way substitution and reached similar
insights. In addition, the authors explored the effect of substitution on the total
inventory levels and observed that when the revenue from substitution increases,
the optimal quantity of the substitutable product increases faster than the substitute.

Rajaram and Tang (2001) studied the same problem but allowed the substitution
parameter to be anywhere between 0 and 1. The heuristic they presented explores
how the demand variation and correlation as well as the substitution affect the
expected order quantities and expected profits. Khouja et al. (1996) used Monte
Carlo simulation to find the optimal order quantities. Six events are defined to
represent this model. First event is when the demand for each item is less than
its order quantities. Second event is when the demand for each item is equal to or
higher than its order quantities. The third and the fourth events are when the demand
for item 1 is greater than the order quantity, and the excess quantity of item j is
sufficient or insufficient, respectively. Similar case holds for the fifth and the sixth
events. They define the upper and lower quantity bounds for each item and prove that
the optimal quantities will be between these two values. The first property, which
aids the proof of Lemma 1, states that it is more profitable to sell customers one unit
of i than to sell t j quantity of item j. They define the lower bounds to be QL

1 and QL
2 ,

where F1(X1 = QL
1 ) ≈ 1 and F2(X2 = QL

2 ) ≈ 1 holds. Lemma 1 indicates that the
optimal solution will always be higher than the lower bound. In order to prove this,
three scenarios that violate lemma 1 are considered. They show that for each of the
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cases, the expected profit increases when the solution is equal to or higher than the
lower bound. They define upper bounds to be QU

1 and QU
2 , where F3(X3 = QU

1 )≈ 1
and F4(X4 = QU

2 ) ≈ 1, X3 = X1 + t1(X2 −QL
2 ) and X4 = X2 + t2(X1 −QL

1 ). Using
similar arguments to lemma 1, they prove that the optimal solution is lower than the
upper bound. Stricter upper bounds can be found assuming X1 and X2 are normally
distributed; consequently, X3 and X4 can be assumed to be normally distributed.
They prove that any optimal solution will be less than QN

1 and QN
2 , where QN

1
and QN

2 are the solutions to the newsvendor problems with demands X3 and X4.
Numerical tests were run to gain insights to the problem. As a result, it was found
that as t1 increases, Q1 increases and Q2 decreases. This can be explained by the
decrease in the effective cost of underestimating item 2. Consequently, the demand
for item 1 increases and the demand for item 2 decreases.

The assumptions for this paper are: (1) demand is normally distributed, (2)
demand for different items is independent, (3) the salvage value for unsold items is
zero, (4) there is no penalty for unmet demand, (5) price, cost, average demand, and
standard deviation of demand for all products are the same, (6) for the model with
budget constraint, only two items are considered, (7) analyzing substitutability, only
a two-item newsvendor problem is considered, and it is assumed that the customer
takes a single unit of the substitution product, and (8) substitutability is assumed to
be symmetric.

In the model without additional complications, it is shown that the value
of product-mix information increases with the number of items, whereas the
value of global information decreases with the number of items. The value of
both product-mix information and global information decreases with a budget
constraint. Furthermore, the value of perfect information also decreases with a
budget constraint. The probability of substitution decreases the value of product-
mix information such that it is zero with complete substitution, and increases the
value of global information so that it is equal to the value of perfect information
with complete substitution.

1.4 Extensions

In this final section, we describe two recent extensions for handling the uncon-
strained MPNP for the case of substitute products. The first extension examines the
case where the demand is price dependent. This is a common situation that arises in
practices that customers substitute a different product when the price of the desired
product has increased. For example, the supermarkets stock two different brand
shampoos with same price and similar quality. If one of the products has increased
their price, the price sensitive customers will choose the product with the lower
price. The second case addresses the situation where demand is quantity dependent.
This is reasonable in reality because an increase in shelf space for a product attracts
more customers to buy it due to its visibility and popularity. Conversely, low stocks
of certain goods (e.g., perishable food) might leave the impression that they are not
fresh. In both cases, we present the results for a stylized scenario for two products.
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1.4.1 Price Linear Demand

Carrillo et al. (2011) analyze the stocking decision under price linear demand for
substitutive products. The demand function for product i(i = 1,2) is:

xi = ai − bipi + sp j + εi, (1.44)

where ai is the market share for product i, bi represents the price elasticity of demand
for product i, and s is the symmetric price-based substitution effect parameter. εi is
defined as a continuous random variable with probability density function f (·) and
cumulative distribution function F(·) in the range of [−di,di] with mean μi The
profit for each product is:

πi(Qi,xi) =

{
pixi − viQi + gi(Qi − xi) if Qi ≥ xi

piQi − viQi −Bi(xi −Qi) if Qi < xi
. (1.45)

Let zi = Qi − ai+ bipi, the expected profit for each product i is:

E[Π(z1,z2, p1, p2)] =

{∫ z1

−d1

[p1(a1 − b1p1 + sp2 + ε1)+ g1(z1 − ε1)] f (ε1)dε1

}

+

{∫ d1

z1

[p1(a1 − b1p1 + sp2 + z1)+B1(z1 − ε1)] f (ε1)dε1

}

−v1(a1 − b1 p1 + sp2 + z1)

+

{∫ z2

−d2

[p2(a2 − b2p2 + sp1 + ε2)+ g2(z2 − ε2)] f (ε2)dε2

}

+

{∫ d2

z2

[p2(a2 − b2p2 + sp1 + z2)+B2(z2 − ε2)] f (ε2)dε2

}

−v2(a2 − b2 p2 + sp1 + z2)

=
2

∑
i=1

{
(pi − vi)(ai − bipi)− (vi − gi)zi

−(pi − gi)

[∫ di

zi

(εi − zi) f (εi)dεi − μi

]}
+Bi

∫ di

zi

(zi − εi)

× f (εi)dεi + sp1(p2 − v2)+ sp2(p1 − v1). (1.46)

The FOCs are:

∂E[Π ]

∂ z1
=−v1 + g1F(z1)+ (p1 +B1)[1−F(z1)], (1.47)
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∂E[Π ]

∂ z2
=−v2 + g2 +(p2 +B2)[1−F(z2)], (1.48)

∂E[Π ]

∂ p1
= 2b1

[
a1 + b1v1

2b1
− p1

]
−
∫ d1

z1

(ε1 − z1) f (ε1)dε1 +2sp2− sv2 +μ1, (1.49)

∂E[Π ]

∂ p2
= 2b2

[
a2 + b2v2

2b2
− p2

]
−
∫ d2

z2

(ε2 − z2) f (ε2)dε2 +2sp1− sv1 +μ2. (1.50)

The second-order conditions are:

∂ 2E[Π ]

∂ zi
2 = (gi − pi −Bi) f (zi) for i = 1,2, (1.51)

∂ 2E[Π ]

∂ pi
2 = −2bi for i = 1,2, (1.52)

∂ 2E[Π ]

∂ z1∂ p1
= 1−F(z1), (1.53)

∂ 2E[Π ]

∂ z1∂ p2
= 0, (1.54)

∂ 2E[Π ]

∂ z2∂ p2
= 1−F(z2), (1.55)

∂ 2E[Π ]

∂ z2∂ p1
= 0, (1.56)

∂ 2E[Π ]

∂ p1∂ p2
= 2s. (1.57)

We can’t prove that the Hessian is strictly concave without the specific value for
parameters.

For specific values of z1 and z2, (1.49) and (1.50) are strictly and jointly concave
in p1 and p2. Since it was assumed that b j > s for j = 1,2., (1.52) and (1.57) indicate
that |H1| < 0 and |H2| = 4b1b2 − 4s2 > 0. Thus, for given values of z1 and z2, the
optimal prices can be determined by solving the following simultaneous equations
(obtained by setting the FOCs in (1.49) and (1.50) equal to 0):

− 2b1p1 + 2sp2 =

∫ d1

z1

(ε1 − z1) f (ε1)dε1 + sv2 − (a1 + b1v1)− μ1, (1.58)

2sp1 − 2b2p2 =

∫ d2

z2

(ε2 − z2) f (ε2)dε2 + sv1 − (a2 + b2v2)− μ2. (1.59)
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The solution to this set of equations is:

p1(z1,z2) =
b2u1 + su2

2(b1b2 − s2)
, (1.60)

p2(z1,z2) =
b1u2 + su1

2(b1b2 − s2)
, (1.61)

where u1 = (a1 + b1c1)−
∫ d1

z1
(ε1 − z1) f (ε1)dε1 − sc2 + μ1 and u2 = (a2 + b2c2)

−∫ d2
z2
(ε2 − z2) f (ε2)dε2 − sc1 + μ2.

Then the following algorithm could determine the optimal prices, stocking
quantities, and the corresponding optimal profit:

1. Set z1 = −d1 − 0.01; z2 = −d2 − 0.01; Pro f it = 0; m1 = m2 = 0, p1t = p1 = 0;
p2t = p2 = 0 and z1t = z2t = 0.

2. z1 = z1 + 0.01. If z1 > d1, go to 6.
3. z2 = z2 + 0.01. If z2 > d2, go to 2.
4. Compute p1(z1,z2) using (1.60) and p2(z1,z2) using (1.61). Set p1t = p1(z1,z2)

and p2t = p2(z1,z2).
5. Compute E[Π(z1,z2, p1t , p2t ] using (1.46). If Pro f it > E[Π(z1,z2, p1t , p2t)], go

to 3, else set Pro f it = E[Π(z1,z2, p1t , p2t)]; z1t = z1; z2t = z2; m1 = p1t , m2 = p2t

and go to 3.
6. The optimal market prices are: p1∗ = m1 and p2∗ = m2; the optimal stocking

quantities are: q1∗= a1−b1m1 + sm2+ z1t , and q2∗= a2−b2m2 + sm1+ z2t and
associated optimal profit is Pro f it.

1.4.2 Quantity Linear Demand

The demand function for quantity linear demand of product i (i = 1,2) is

xi = ai + biqi − sq j + εi, (1.62)

where ai represents the relative market share for product i, bi is the quantity elasticity
of demand, and s is the symmetric quantity-based substitution effect parameter. Also
εi is defined as a continuous random variable with probability density function f (·)
and cumulative distribution function F(·) in the range of [−di,di] with mean μi. The
profit for each product is:

E[Πi(z1,z2,q1,q2)] =

{∫ zi

−di

[pi(ai + biqi − sp j + εi)+ gi(zi − εi)] f (εi)dεi

}

+

{∫ di

zi

[pi(ai + biqi − sq j + zi)+Bi(zi − εi)] f (εi)dεi

}
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−vi(ai + biqi − sq j + zi)

= (pi − vi)(ai + biqi − sq j)− (vi − gi)zi +(pi − gi)μi

−(pi − gi+Bi)

∫ di

zi

(εi − zi) f (εi)dεi, (1.63)

where zi = qi − (ai + biqi − sq j). The total profit is E[Π(z1,z2,q1,q2)] = E[Π1)]
+E[Π2]

The FOCs are:

∂E[Π ]

∂qi
= (pi − gi)bi +(gi − vi)+ (pi− gi +Bi)[1−F(zi)](1− bi)+

−s{(p j − g j)+ (p j − g j +B j)[1−F(z j)]}. (1.64)

The second-order conditions are:

∂ 2E[Π ]

∂qi
2 =−(pi − gi +Bi)(1− bi)

2 f (zi)− (p j − g j +B j)s
2 f (z j), (1.65)

∂ 2E[Π ]

∂q1∂q2
=−(p1 −g1 +B1)(1−b1)s f (z1)− (p2 −g2 +B2)(1−b2)s f (z2). (1.66)

From the Hessian Matrix, |H1| < 0, |H2| = u1u2[(1 − b1)(1 − b2)− s2]2 > 0,
where ui = (pi − gi +Bi) f (yi). Since the objective function is strictly concave, we
can obtain the solution for this problem from the FOCs (i.e., by setting them equal
to 0 and simultaneously solving for the decision variables).

1.5 Conclusions and Directions for Future Research

In this paper, we have reviewed and critiqued the literature to date for the MPNP. As
is obvious, the majority of prior research has focused on determining the optimal
stocking policy for the constrained MPNP. More recent work on exploring the
impact of substitutability has also been undertaken and in this setting, we present
two possible extensions of the MPNP for price and quantity substitution effects.
For both these cases, we show that optimal solutions can be obtained through
either a search process (for price substitution) or a structural analysis (for quantity
substitution). Here we point out a few areas where further research is needed.
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1.5.1 Price-Dependent Demand

Previous researches on MPNP assume the independence of price and market
demand. Recent work has mitigated this issue by addressing the joint ordering and
pricing problem in the MPNP framework. But most of these works only consider
single budget constraint, while in practice the retailer may face multiple resource
constraints. So it would be interesting to extend the study to consider the problem
with multiple constraints. Due to the complexity of the problem, high quality
heuristics procedures are anticipated to find good solutions.

1.5.2 Multiple Suppliers

Nearly all the models in this chapter assume single supplier. However, in practice,
retailers may face several suppliers when making the merchandise decision. It would
be interesting to incorporate multiple suppliers into MPNP, especially under price
competition between potential suppliers and availability of several supply options.
We see many opportunities for future research to help bridge this gap.

1.5.3 Product Substitution

Incorporating the substitution effects can have a significant effect on profitability.
However, most previous studies on the substitution effects of the MPNP only
focus on two products substitutability. It would be interesting to extend the
analysis in a more generalized case. This extension requires a better understanding
of interdependencies among the demands for related products. So an empirical
investigation of the generalized substitution effects in customer decision making
will also be an attractive future research area.

1.5.4 Risk and Hedging

The classical newsvendor problem is based on the assumption that most of the
supply chains are risk neutral. The research on risk-averse supply chains has
been considered by several authors. However, these papers focused on independent
demand. As an extension, price and quantity-dependent demands can be considered.
The hedging problem has been tackled by Vaagen and Wallace in the fashion
industry, this research could be extended to other industries with different sales
behavior. Also, the pricing strategies for these hedging portfolios could be examined
to identify policies that further reduce profit risk.
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